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We present and analyze in detail a test bench for random number sequences based on the use
of physical models. The first two tests, namely the cluster test and the autocorrelation test, are
based on exactly known properties of the two-dimensional Ising model. The other two, the random
walk test and the n-block test, are based on random walks on lattices. We have applied these tests
to a number of commonly used pseudorandom number generators. The cluster test is shown to be
particularly efficient in detecting periodic correlations on bit level, while the autocorrelation, the
random walk, and the n-block tests are very well suited for studies of weak correlations in random
number sequences. Based on the test results, we demonstrate the reasons behind errors in recent
high precision Monte Carlo simulations, and discuss how these could be avoided.

PACS number(s): 02.70.Lq, 75.40.Mg, 05.40.+j, 05.50.+q

L INTRODUCTION

Since the late 1940s, the Monte Carlo (MC) method [1,
2] has become an established tool in various fields of nat-
ural sciences, with applications including MC simulations
in physical sciences [3] and stochastic optimization [4] in
applied mathematics. The fundamental idea on which
the MC method is based is the use of random numbers.
For computational purposes random numbers have tra-
ditionally been produced by deterministic rules, imple-
mented as pseudorandom number generators (PRNG’s)
which usually rely on simple arithmetic operations. Al-
though it is obvious that these pseudorandom number
sequences can be “random” only in some limited sense,
their imitation of random behavior is often good enough
for cases in which the quality of random numbers is not
an essential requirement. Modern high speed computers
and high-precision calculations, however, have caused the
requirements for the quality of random number sequences
to greatly increase. Under such circumstances it is crucial
to confirm the quality of random numbers before using
them extensively. In order to carry out this task, tests
for randomness are needed.

In the course of time, numerous tests have been sug-
gested (see, e.g., Refs. [5-8], and references therein).
Some of these have been constructed to study the prop-
erties of PRNG algorithms and are therefore theoretical
[6, 7]. An alternative approach is to study properties
of random number sequences regardless of the source.
Such tests are called empirical. Moreover, many of the
tests are called standard [6] in the sense that they probe
purely general statistical properties of random number
sequences, not concentrating on the requirements of any
application in particular. When correlations are not
found, the sequence passes the test.

Passing several tests does not prove the randomness
of any sequence, however. This is due to the fact that
proving randomness requires that the sequence fulfill an
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actual definition for randomness. An unfortunate fact
is, however, that there is nmo unique definition for ran-
domness. Attempting to prove randomness in the case
of a (long) sequence of numbers for any of the defini-
tions suggested (see, e.g., Refs. [6,9-11]) is not feasible.
Therefore, the best any test can do is to build confidence
in the properties of random number sequences. Another
practical problem concerns PRNG’s. Since they are all
based on deterministic algorithms, it is always possible
to construct a test for every generator where it will fail.
Therefore, passing many tests is never a sufficient condi-
tion for the use of any PRNG in all applications. In other
words, in addition to standard tests, efficient application
specific tests of randomness are also needed. This need is
emphasized by recent simulations, in which some physi-
cal models combined with special algorithms have been
found [12-16] which are very sensitive to the quality of
random numbers.

During the last two decades, some application specific
tests have been proposed and used (for a list see, e.g.,
Ref. [8]). A systematic test bench has been lacking until
now, however. The aim of this work is to present one
example of constructing such a test bench following and
extending our recent work [8,17,18]. We plan to present
details of practical implementation of the tests in anuther
publication [19]. The tests have been developed from
the point of view of a physicist, in the sense that they
are based on direct analogies to physical systems, most
notably the two-dimensional Ising model [20] and random
walks. Based on these models we have constructed two
classes of tests. In the first class based on the Ising model,
the cluster test [17] compares the cluster size distribution
of a random lattice with the Ising model at an infinite
temperature. In the autocorrelation test [18], we calculate
the integrated autocorrelation time of some quantities of
the Ising model, when the Wolff updating method [21] is
used. The second class comprises tests related to random
walks. In the random walk test [18], we consider the
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distribution of the final position of a random walker on
a plane which is divided into four equal blocks. The n-
block test [18] is based on the idea of renormalizing a
sequence of uniformly distributed random numbers, and
it is essentially a random walk test in one dimension.

The outline of this paper is as follows. In Sec. II, we
first describe the PRNG’s used in this work. Following
this, in Sec. III we present the tests developed in this
work, describing them in detail. A brief account has pre-
viously been published in Refs. [17,18]. The results of
the tests are given in Sec. IV. We first demonstrate that a
bit level implementation of the cluster test is particularly
powerful in finding periodic correlations. Moreover, we
show that the autocorrelation, the random walk, and the
n-block tests are very efficient in detecting short-range
correlations. In particular, we demonstrate that the re-
cent erroneous results obtained in high-precision MC sim-
ulations [12-16] are due to these short-range correlations.
Our results also support [8] the ideas of Ziff [22], on how
the properties of some pseudorandom number generators
may be considerably improved. Finally, summary and
discussion are given in Sec. V.

II. TESTED PSEUDORANDOM
NUMBER GENERATORS

In this section we briefly present the algorithms of
the tested pseudorandom number generators. Since most
generators are widely used and good reviews of pseudo-
random number generation are available [7, 23-25], we
will not consider this subject in detail. The only excep-
tions are the ZIFFp and PENTAp generators, which will
be described in some detail due to the lack of published
documentation.

The pseudorandom number generators tested in this
work include generalized feedback shift-register (GFSR)
algorithms GFSR(p,q,®) [26], which are of the form
Tp = Tp_p ® Tp_gq, Where @ is the bitwise exclusive-or
(XOR) operator. They are denoted by Rp; recommended
values for p and ¢ (p > ¢q) can be found, e.g., in Refs.
[27-31]. Other generators include two linear congruen-
tial generators =, = (16807 X z,_;)mod (23! — 1) [32]
known as GGL and ;11 = (69069 X z; + 1)mod 232 [33]
known as RAND, RAN3 [34], which is a lagged Fibonacci
generator z,, = (T,_g5 — Tn—24)mod 23!, and a combina-
tion generator RANMAR [24, 35]. Most generators (ex-
cluding the GFSR generators) did not require a special
initialization procedure. The GFSR generators were ini-
tialized with 32-bit integers produced by GGL. Other
initialization methods including the one in Ref. [36] were
also checked but the test results were unaffected.

In addition to the generators above, we have tested
some new promising generators, which are based on
the GFSR method with four lags. Their algorithm is
GFSR(p7 q1,92, 93, ®) or

T; = Ti—p D Ti—qy (5] Ti—qq 3] Ti—qg,y (1)

in which p > max(q1, g2,93). For the choice of lags, there
are two possible approaches. Kurita and Matsumoto [29]
have suggested lags based on the theory of primitive pen-

tanomials. In this work, such generators will be called
PENTAp generators. Ziff [22] has used a rather different
approach, developing generators based on k decimation
(i-e., only every kth number of the sequence is used) of
GFSR(p, ¢, ®) generators with some value of k which is
not a power of 2 (such as k£ = 3,5,7). The theory under-
lying the choice of lags p, ¢1, g2, and g3 in Ziff’s method
is given in Ref. [22]. In this work, generators of this kind
will be called ZIFFp generators. One particular gener-
ator has been given in Ref. [37]. The initialization of
PENTAp and ZIFFp generators was performed bit by bit
by using GGL: all b x p bits (b being the word length) in
the initial seed vector were initialized by using the most
significant bits of integers produced by GGL.

III. PRESENTATION OF TESTS

In the following, we give a detailed account of the new
tests. The first two, the cluster test and the autocorrela-
tion test, are closely related to the two-dimensional Ising
model [20]. These tests are based on studies of the cluster
size distribution in a random lattice, and on calculations
of the integrated autocorrelation times for certain phys-
ical quantities, respectively. Although we apply these
tests to the Ising model, they can be generalized to other
models and applications as well. For example, although
our version of the cluster test is implemented for studies
of random bits, its use for testing random words is a triv-
ial extension. Moreover, the idea of using autocorrelation
functions in testing of random numbers is universal.

The next two test methods are related to random
walks. In the random walk test, we study random walks
on a plane as a function of the walk length. The n-block
test is based on the idea of renormalizing a sequence of
uniformly distributed random numbers, and is basically
arandom walk test in one dimension. Despite its simplic-
ity, the latter test is especially effective in finding short-
range correlations. In connection with these two tests,
we also use the well-known chi-square test [6, 38].

A. Tests based on the Ising model

1. Cluster test

There is a natural analogy between binary numbers
and the Ising model, which can be made use of in con-
structing a cluster test [17] in the following way. We
take the ith bit from every successive number and put
them on a two-dimensional square lattice of size L2. By
identifying ones and zeros with the “up” and “down”
spins & = =1 of the Ising model, the resulting random
configuration should be one of the 2L equally weighted
configurations corresponding to infinite effective temper-
ature. The simplest quantity that characterizes order in
the Ising model is the average magnetization

1 &
m= £ > s, (2)
=1

in which §; is the spin at site ¢. In the disordered phase,
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the configuration average (m) = 0. This simple quantity
tests the equidistribution of bits.

However, a better measure of spatial correlations be-
tween the spins can be obtained if we study the distribu-
tion of connected spins, or clusters of size s on the lattice.
The cluster size distribution (C,) is given by [39]

(Cs) = sp° D, (p), (3)

in which D,(p)’s are polynomials in p = 1/2. The nor-
malization condition is Y oo (C,) = 1. Enumeration of
the polynomials D,(p) is a difficult combinatorial prob-
lem, and has been done up to s = 17 [39]. They are listed
in a suitable form, e.g., in Ref. [8]. '

We note that a similar approach could be utilized in
one dimension also. There, the exact solution for the
cluster size distribution is known [40], which makes it
possible to develop a more complete test (for any s) based
on the same physical quantity as in the cluster test. How-
ever, the two-dimensional case is more interesting from
the point of view of MC simulations.

The test procedure we have used is as follows. We first
form an L? lattice as above and enumerate all the clusters
in it [41] by using periodic boundary conditions in both
directions ([42], pp. 26-28). For such a configuration
we calculate the (unnormalized) average size of clusters
within s = 1,2,...,17, denoted as S{'.;). This procedure
is repeated N times corresponding to configurational av-
eraging, yielding Si7 = Eszl Si’;) /N. The theoretical
counterpart of this quantity is given by s17 = Zill s(Cs).
We also compute the empirical standard deviation o7 of
the quantities S{';). For each ith bit the test statistic
chosen is

Si7—s
o = 17 17 (4)
o17

Using this statistic, the tests were performed compar-
atively between several pseudorandom number genera-
tors, with results from GGL assumed to be independent
variables. Comparison of other generators with GGL is
justified since GGL has been shown to have excellent
properties on bit level [43, 44]. Furthermore, in Fig. 1
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FIG. 1. A schematic (unnormalized) distribution (circles)

for GGL of D = Sﬁ:) — 817 with 31000 independent samples.
The distribution approaches Gaussian behavior (solid line).
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we show the distribution for S{l;) — 817 as computed for
GGL, which is accurately given by a Gaussian.

For the final test statistic, the mean value of g; aver-
aged over all the 31 bits of GGL, denoted as ggqr, and
the corresponding standard deviation oggr were com-
puted and the results for all other generators were com-
pared to these values using

g = lgi — QGGLI' )
OGGL

The bit ¢ in question failed the test if g} was consecutively
greater than 3 in two separate tests.

We also considered other similar choices for the test
parameters such as using the maximum value of g; over
all the 31 bits of GGL instead of gggL, and then perform-
ing the analysis as above. The results of this approach
were consistent with Eq. (5) (results for bits 7 and 12 of
RAND being the only exceptions).

2. Autocorrelation test

In the autocorrelation test [18] we consider the auto-
correlation function C4 for some physical quantity A.
Then, we calculate the integrated autocorrelation time
T4 of C4. Our approach follows the procedure given in
Ref. [45].

The autocorrelation function is defined as

(A(to)A(to +t)) — (A(to0))? (6)
(A(to)?) — (A(to))2  ’
in which t denotes time. In order to calculate an estima-

tor 74(W) for the integrated autocorrelation time 74, a
truncation window W is used:

Ca(t) =

WwW-1
+ 3 Calt) + RW), (7)

t=1

ra(W) = %

with the remainder

_ CaW)

RW) = =55 (8)
and

1W) = Gt . ©

The convergence of 74(W) must be checked as a func-
tion of the window size W. Since noisy contributions
from large separations appear after some value W,,, the
estimate 74 is found by averaging 74(W) between W,
and W, in which W, < W,, denotes the value for which
Eq. (7) first converges. An illustration of this procedure
is given in Fig. 2. The error estimate for 74 (W) is given
in Ref. [45].

In this work, we consider the two-dimensional Ising
model at its critical coupling point K.. Since the corre-
lation length associated with the model diverges at K,
we expect the system to be particularly sensitive to ad-
ditional spatial correlations due to random numbers dur-
ing MC simulations. The simulations were carried out
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FIG. 2. The integrated autocorrelation time 75 of energy
E, when RAND has been employed. The error starts to in-
crease after W,, = 18. The error bars in the cases of W = 19
and W = 21 extend beyond the boundaries of the graph.

on a square lattice with the Wolff algorithm [21] us-
ing K. = 1In(1 + V/2). The linear size of the system
was L = 16. Our implementation of the single cluster
search algorithm followed Ref. [41], and the measure-
ments for the calculated quantities included the energy
E, the magnetic susceptibility x [45], and the (normal-
ized) size of the flipped clusters ¢, separated by a single
cluster update. Then, by following the procedure given
above we calculated the corresponding integrated auto-
correlation times Tg, T¢, and 7. from the autocorrelation
functions Cg,Cyg, and C.. Finally, the estimates for the
integrated autocorrelation times were scaled to the time
unit of one MC step; i.e., every spin on the lattice is up-
dated once on the average. Therefore the final results are
T4 = Ta({c) [45], in which A is one of the quantities E, x,
and c.

In the case of the Ising model, the exact value for
the energy F = 1.45312 [46] is known, which allows a
comparison between results from different pseudorandom
number generators. For other quantities, the test pro-
vides us with information on the relative performance of
the random number generators. Here we assumed the
results from GGL and RANMAR to be correct. This as-
sumption is justified because their results for the energy
E were correct within our error limits.

B. Tests based on random walks

1. Random walk test

In the random walk test [18] we consider random walks
on a two-dimensional lattice, which is divided into four
equal blocks, each of which has an equal probability to
contain the random walker after a walk of length n. The
test is performed IV times, and the number of occurrences
in each of the four blocks is compared with the expected
value of N/4, using the chi-square test with three degrees
of freedom. A generator fails if the x? value exceeds 7.815
in at least two out of three independent runs [47]. This
should occur with a probability of only about 3/400.

In addition to the measure given above, other quanti-
ties may also be studied. For example, one may follow
the probability distribution function (PDF) on the po-
sition of a random walker as a function of time. Com-
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paring such functions between different random number
generators may give further information on their relative
properties. Calculation of the spatial distribution for the
second moment is then also possible. These studies are
beyond the scope of the present work, however.

For the purpose of completeness, let us mention that
other random walk tests have been proposed by Binder
and Heermann ([42], pp. 76-80) and Ziff [22]. The for-
mer is based on the idea of studying the average end-
to-end distance which should be a linear function of the
walk length n. The test proposed by Ziff is based on
random walks in a two-dimensional square lattice, where
the random walker starts from one corner and heads to-
wards the opposite one. At every step it may turn either
left or right, unless it enters a previously visited site,
in which case it is forced to turn so as not to retrace its
path. Therefore eventually it hits one of the two opposite
boundaries, which should occur with an equal probabil-

ity.
2. n-block test

The n-block test [18] is a simplified version of the
random walk test, being basically a random walk test
in one dimension. In this test we take a sequence
{z1,22,...,2n} of uniformly distributed random num-
bers 0 < z; < 1, whose average Z is calculated. If
Z > 1/2, we choose y; = 1; otherwise y; = 0. This is
repeated IV times. We then perform the chi-square test
on variables y; with one degree of freedom. Each test
is repeated three times, and the generator fails the test
with fixed n if at least two out of three x? values exceed
3.841 [47], which should occur with a probability of about
3/400.

We note that the main difference between the n-block
test and a one-dimensional random walk is in the use of
random numbers. In the n-block test random numbers
are added together in blocks, and therefore properties
of all bits are studied. In the one-dimensional random
walk the situation is a little bit different, since the most
significant bit is the only one that matters: at each step,
the most significant bit determines the direction of the
jump.

Finally, let us mention that in Ref. [15] Grassberger
has proposed a somewhat unspecified “block” test to
study the range of correlations for the lagged Fibonacci
generator (LF) (17,5,+).

IV. RESULTS

A. Tests based on the Ising model

1. Cluster test

We have implemented the cluster test to study bit level
correlations. Each bit of the random number generators
was subjected to the test, and the results were compared
with previous results [44] of the d-tuple and rank tests
[35].

We first tested the average magnetization, i.e., the
equidistribution of bits. The bits failed the test if the
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deviation from the expected number of ones (i.e., L?/2)
consecutively exceeded three times the standard devia-
tion of the binomial distribution with M samples. The
test was repeated twice with M = 4 x 108 and its results
are also shown in Table I. No correlations were found for
GGL, R250, or R1279. Surprisingly, however, this rather
simple test revealed that the first 11 bits of RAN3 fail
(with standard deviations larger than 6.7) although only
the first four or five bits fail in the other tests. On the
other hand, for RAND only bits 22 — 31 failed, which
produced an exact 50-50 distribution of zeros and ones.

The actual cluster test for 1 < s < 17 was repeated
twice with parameters L = 200 and N = 10000. To
check for finite-size effects additional tests with L = 500
were carried out. They gave results fully consistent with
L = 200. Our results are summarized in Table I, where
results of the previous d-tuple and rank tests from Ref.
[44] have also been included. More detailed results of the
cluster test (values for test statistics g; for all i and for
all generators) are given in Ref. [8].

Although more powerful than the other methods, the
cluster test reveals no disc.rnible correlations for either
GGL, R250, or R1279. For RANMAR and RAN3, the
cluster test gives results copsistent with Ref. [44], but for
RAND additional correlations are revealed in bits 7 — 12,
in contrast to passing the d-tuple test [44]. According
to the results of RAND, the cluster test is very effective
in locating periodic correlations, since the period of bit
number 8 of RAND is as large as 224 [48].

In conclusion, the cluster test in the form presented
here is very well suited to detection of correlations on bit
level, being especially effective for periodic correlations
as shown in detail in Refs. [8,17].

2. Autocorrelation test

The autocorrelation test was carried out with two sets
of parameters. First, 10000 Monte Carlo steps (MCS’s)
were performed to equilibrate the system starting from
a random initial state, and then N = 107 samples were
taken to test most of the generators once. One MCS de-
notes updating of each lattice site once on the average. In
the second set, 100 000 MCS’s were followed by N = 108
samples to test some of the generators more extensively.
The linear size of the system was L = 16.

A summary of the results in Table II shows that, based
on this test, the generators can be classified into two cat-
egories. First, let us consider results with N = 107 sam-
ples. For the energy (E), deviations from the exact result
of (E) = 1.45312 [46] for R31, R250, R521, and RAN3
are much larger than 30 in which o is the standard devia-
tion [45]. In particular, the average size of flipped clusters
(c) is very sensitive to correlations in random number se-
quences, since in the erroneous cases it is clearly biased.
This is illustrated in Fig. 3, in which the PDF’s of the
flipped cluster size ¢ in the case of few random num-
ber generators are given. Most striking, however, is the
behavior of the integrated autocorrelation times 7. For
generators, which show no significant deviations in (E),
(X), or {c), results for the 7’s agree well with each other.
However, for R31 and R250, the integrated autocorrela-
tion times show errors of about 8% compared with results
of GGL and RANMAR. Our results thus show that these
quantities are particularly sensitive measures of correla-
tions in pseudorandom number sequences.

Another important point is the behavior of R31 com-
pared with ZIFF31 and PENTA31. Though R31 clearly
fails these autocorrelation tests, its 5-decimated sequence
ZIFF31 and a generator PENTA31 based on a primitive
pentanomial 23! 4+ 223 + 2! + 2% + 1 give correct results
within error limits. This is further emphasized by studies
with NV = 108 samples, where R89 fails whereas ZIFF89
and PENTAS89 give results as good as RANMAR. There-
fore these results clearly indicate that k& decimation of
GFSR generators with two lags and primitive pentanomi-
als generate sequences with less discernible correlations
than GFSR generators based on two lags only.

To compare our results with those of Refs. [13,16] we
also used the autocorrelation time test to further study
the decimation of the output of R250, i.e., we took ev-
ery kth number of the pseudorandom number sequence.
For k = {3,5,6,7,9,10,11,12, 24,48}, the correlations
vanish in agreement with Ref. [13] (kK = 5) and Ref.
[16] (k = 3,5). On the other hand, for £ = 2™ with
m = {0,1,2,3,4,5,6,7,8}, the sequences fail. These
findings agree with the theoretical result of Golomb [49],
who showed that the decimation of a maximum-length
GFSR sequence by powers of 2 results in equivalent se-
quences.

Our results for the autocorrelation test are in agree-
ment with observations made by various other authors

TABLE I. Results of the cluster test (k = 1), where bit number one denotes the most significant
bit. d-tuple and rank test results are from Ref. [44]. The last column denotes bits which fail in

testing the equidistribution of bits.

Random Failing bits

number Cluster test d-tuple test Rank test Equidistribution

generator of bits
GGL None None None None
R250 None None None None
R1279 None None None None
RANMAR 25 — 31 25 -31 25 - 31 25 - 31
RAN3 1-4,25-30 1—-5,25-30 1-5,26—-30 1-11,24-30
RAND 7-31 13 - 31 18 — 31 22 -31
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Results of simulations for the Ising model at criticality with the Wolff algorithm. The number of samples is

denoted by N and the values of lags g; are given where needed. The value of the decimation parameter k is one unless stated
otherwise. The average size of the flipped clusters is normalized by the system size. The errors shown correspond to o [45]; the
most erroneous results are in boldface. See text for details.

N RNG k Lags Physical quantities Integrated autocorrelation times
g (E) x) (e) TE T Te
107 R31 3 1.46774(7) 0.564(2) 0.5664(3) 1.233(4) 1.058(3) 0.507(2)
PENTA31 23,11,9 1.45300(10) 0.545(2) 0.5454(2) 1.440(6) 1.224(5) 0.627(7)
ZIFF31 13,8,3 1.45313(10) 0.545(2) 0.5456(2) 1.440(6) 1.223(5) 0.624(4)
R250 103 1.45509(7) 0.548(2) 0.5474(2) 1.333(4) 1.143(4) 0.589(4)
3 103 1.45302(7) 0.545(2) 0.5452(2) 1.446(6) 1.226(5) 0.628(5)
R521 168 1.45379(7) 0.546(2) 0.5461(2) 1.384(5) 1.182(5) 0.604(4)
R1279 418 1.45312(7) 0.545(2) 0.5454(2) 1.426(5) 1.215(4) 0.622(3)
R2281 1029 1.45311(7) 0.545(2) 0.5456(2) 1.439(5) 1.226(5) 0.627(5)
R4423 2098 1.45303(7) 0.545(2) 0.5454(2) 1.441(5) 1.226(5) 0.624(4)
R9689 4187 1.45313(7) 0.546(2) 0.5455(2) 1.444(5) 1.229(5) 0.625(4)
R19937 9842 1.45274(7) 0.545(2) 0.5452(2) 1.434(5) 1.220(5) 0.624(4)
R44497 21034 1.45292(7) 0.545(2) 0.5452(2) 1.434(5) 1.219(5) 0.622(2)
107 RAN3 1.45254(7) 0.545(2) 0.5446(2) 1.447(5) 1.231(5) 0.630(3)
RAND 1.45304(10) | 0.545(2) 0.5454(2) 1.434(5) 1.221(5) 0.620(2)
GGL 1.45309(7) 0.545(2) 0.5454(2) 1.436(5) 1.221(5) 0.622(4)
RANMAR 1.45303(7) 0.545(2) 0.5452(2) 1.443(5) 1.227(5) 0.624(4)
10° R89 38 1.45720(3) | 0.5503(8) | 0.55031(4) | 1.3041(14) | 1.1134(12) | 0.5662(9)
PENTA89 69,40,20 | 1.45300(3) 0.5454(6) 0.54532(4) | 1.4454(16) 1.2278(15) 0.6260(12)
ZIFF89 61,38,33 1.45305(3) 0.5454(6) 0.54539(4) 1.4398(19) 1.2243(17) 0.6241(15)
RANMAR 1.45304(3) 0.5454(6) 0.54539(4) | 1.4372(16) 1.2211(14) 0.6231(14)

[12, 13, 16], who have also studied the two-dimensional
Ising model. Moreover, the errors in the average clus-
ter sizes formed with the Wolff algorithm show that the
origin of errors observed in these references lies in local
correlations present in the cluster formation process. The
main advantage of our approach is the use of integrated
autocorrelation times as measures for correlations since
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FIG. 3. The (normalized) probability distribution func-
tion P(c) of the flipped cluster size c for some random number
generators. In the inner figure, a part of the distributions has
been magnified. Results of R31 (full circle) and GGL (full
square) correspond to N = 107 samples. In the cases of R89
(open square), ZIFF89 (open triangle), and RANMAR (open
circle) a number of 10® samples have been taken. Error bars
are smaller than the size of the symbols. Results for R31 and
R89 clearly deviate from the others.

the errors are as large as of the order of several percent,
whereas for other quantities such as the energy the error
is much smaller. Due to the fact that this test is not re-
stricted to the Ising model only, its use in other problems
might also prove very fruitful.

B. Tests based on random walks

1. Random walk test

Errors in the average cluster sizes for some of the GFSR
generators in the autocorrelation test suggest that the
correlations must be within the O(L?) successive pseu-
dorandom numbers used in the cluster formation. This
result is in qualitative agreement with the idea that for
GFSR generators the dominant correlations are of triple-
point type [15, 22, 50] and thus separated by the longer
lag p in the algorithm. To quantify the range of corre-
lations empirically, we have employed the random walk
test in a systematic fashion.

First, we studied a group of generators with the walk
length n = 1000. These results are presented in Table
ITI, and they are in agreement with the autocorrelation
test. No correlations for GGL, RAND, or RANMAR
were observed. R250 and R521 pass the test with k£ = 3,
but fail with k¥ = {1, 2,26}, whereas R1279 passes with all
k’s tested. The failure of RAN3 with & = 1 is consistent
with results of previous tests [44] and the autocorrelation
test (however, RAN3 passed the test when every second
or third number was used). It is notable that all the
failures in this test were very clear, since even the smallest
x2 values exceeded 40.
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TABLE III. Results of the random walk test with N = 10° samples. The parameter k equals
one unless stated otherwise. The fourth column indicates the x? values in three independent tests,
or the range of the x? values when results with more than one value of k are included on the same
line. The classification of the generators is based on the failing criterion given in Section IIIB1: a
generator fails the test if the x? value exceeds 7.815 in at least two out of three independent runs.

See text for details.
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RNG k qi x° values Result
R31 3 4094, 4105, 4300 FAIL
R250 1,2,64 103 396.4 — 539.8 FAIL
R521 1,2,64 168 49.01 — 79.16 FAIL
RAN3 40.01, 42.99, 44.53 FAIL
R250 3 103 0.301, 0.873, 1.024 PASS
R521 3 168 1.249, 1.352, 1.735 PASS
R1279 1,2,3,64 418 0.709 — 9.372 PASS
R4423 2098 0.621, 1.226, 8.217 PASS
PENTA31 23,11,9 0.685, 1.587, 2.363 PASS
ZIFF31 13,8,3 2.352, 2.367, 2.632 PASS
RAND 0.304, 0.640, 4.063 PASS
RAN3 2,3 0.033 — 6.877 PASS
GGL 0.090, 0.459, 1.981 PASS
RANMAR 0.293, 1.944, 3.187 PASS

The main difference between the failing generators,
R250 and R521 (with £ = 1), and the successful ones,
R1279 and R4423 lies in the lag parameter p, which is
less than n for the former and larger than n for the lat-
ter. We studied this systematically for various values of
p with the random walk test by locating the approximate
value n., above which the generators fail. The test was
performed for R31, R250, R521, and R1279 with N = 10°
samples. The results for n. were 32 +1, 2805, 590 £+ 5,
and 1515 + 5, respectively, in which the error estimate is
the largest distance between samples close to n.. For the
purpose of illustration, in Fig. 4 we show an example of
the x2 values for R31 and R250 as a function of the walk
length n.

We also studied GFSR generators with four lags. As
Table III indicates, PENTA31 and ZIFF31 pass the ran-
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FIG. 4. The x? values for R31 (inner figure) and R250
(k = 1) in the random walk test as a function of walk length n,
when N = 10° samples have been taken. Three independent
runs in both cases are denoted by different symbols. The
horizontal lines denote x* = 7.815.

dom walk test with N = 10° samples. In these cases,
studies to locate n. were inconclusive, since a small pe-
riod of these generators did not allow testing them with
more than 107 samples. Therefore, similar studies for
PENTAS89 and ZIFF89 with N = 10® samples were car-
ried out, these results being summarized in Table IV.
Although large fluctuations are still present, we may no-
tice that both PENTAS89 and ZIFF89 exhibit correlations
for n. =~ 95 — 200.

2. n-block test

In the n-block test we used an approach similar to the
random walk test. First, we studied various generators
with parameters n = 10% and N = 10%. In the cases
of GGL, RAND, RANMAR, and RAN3, we observed no
correlations. Studies with RANMAR were repeated with
parameters n = 5000 and N = 108, but still no corre-
lations were observed. Then, for GFSR generators R31,
R250, and R521 we performed an iterative study by vary-
ing n. When N = 10°® samples were taken, the resulting
correlation lengths n. were 32 £ 1, 267 + 5, and 555 £+ 5,
respectively. With better statistics, N = 108, we ob-
served no change for R31, whereas the estimate for R521
reduced to 525 + 1, and that of R250 to 251 & 1. The
latter value was confirmed with N = 10° also. Typical
values of x2 for R250 are shown in Fig. 5, where a sharp
onset of correlations at n. is visible.

Following this, we concentrated on studying the gen-
erator ZIFF9689 [GFSR(9689,471,314,157,8)] [22, 37],
which unlike several other generators has performed well
in recent simulations of self-avoiding random walks [14,
15]. This generator was extensively tested up to n =
25000 and N = 107, but no correlations were found.
In order to increase the number of samples IV, we tested
ZIFF1279 [GFSR(1279,598,299,216,®)], which is a 5 dec-
imation of GFSR(1279,216,8). With parameters up to
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TABLE IV. Some results of the random walk test with N = 10® samples for PENTA89 and
ZIFF89. For both generators three independent runs have been performed. Failing results are

shown with bold type. See text for details.

x2 for ZIFF89

%2 for PENTAS9

n |
85 7.785 7.544 8.131 0.427 1.132 1.711
90 2.050 3.716 2.165 1.338 3.874 1.509
95 10.93 6.642 3.895 1.335 3.563 3.422

100 9.130 5.910 8.770 3.867 5.611 4.350

200 8.632 15.76 13.61 25.02 18.48 17.56

500 1.007 6.173 9.822 34.90 39.74 39.51

n = 1500 and N = 10°, no correlations were observed.
These results suggest that deviations from random be-
havior are much less significant for ZIFF generators than
for GFSR generators with two lags. For quantitative pur-
poses, we have studied this subject in more detail by
comparing the results of R89, PENTAS89, and ZIFF89.
These results are shown in Fig. 6. Figure 6(a) clearly
shows how dramatically inferior GFSR generators based
on primitive trinomials are when compared with gener-
ators which are based on either decimation of such se-
quences or use of primitive pentanomials. Furthermore,
when PENTA89 and ZIFF89 are compared with each
other with higher statistics N = 10° [Fig. 6(b)], we
may notice that at least in this particular case the deci-
mated sequence ZIFF89 performs somewhat better than
PENTARB89, although correlations in both sequences are
now clearly present.

The results of the random walk and n-block tests show
that they are very powerful in detecting rather weak cor-
relations in random number sequences. As far as the gen-
erators are concerned, for GFSR generators with two lags
the origin of the errors in the simulations presented here
and in Refs. [12-16] must be the appearance of rather
short-range correlations in the probability distribution.
Moreover, although some empirical estimates for the cor-
relation length have previously been given [14, 15], the
present tests are the first ones that quantitatively show
that the correlation length lies very close to the longer lag
parameter p. This indeed means that the errors are due
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FIG.5. The x? values for R250 in the n-block test. Curves
with circles and squares correspond to N = 10% and N = 10°
samples, respectively. In both cases three independent runs
have been performed. The horizontal line denotes x> = 3.841.

to triple correlations in the GFSR algorithm. Further-
more, for the generators based on a judicious decimation
(e.g., k = 3,5,7) of GFSR generators (with two lags) or
when primitive pentanomials are used as a basis for a
generator, our results show that similar behavior is ob-
served, but with much weaker correlations. Thus genera-
tors using three consecutive exclusive-or operations shuf-
fle bits much better than Rp generators in which only one
exclusive-or operation is used. This results from the fact
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FIG. 6. (a) x? values for R89, PENTAS89, and ZIFF89 as

a function of the block size n, when N = 10® samples have
been taken. In the case of R89, results with N = 10° samples
(open triangles) are also shown. (b) Results for PENTA89
and ZIFF89 have been compared with each other with better
statistics, N = 10°.
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that, compared with Rp generators, in ZIFFp generators
the three-point correlations are much farther apart, and
therefore higher order correlations dominate [22]. Al-
though we are not aware of any theoretical studies for
PENTAp generators, we could assume that this is what
happens for them also. In other words, the approach of
using multiple exclusive-or operations does not actually
remove the correlations but makes them weaker.

V. SUMMARY AND DISCUSSION

Modern high-speed computers and demanding appli-
cations, such as high-precision Monte Carlo simulations
in physical sciences [3] and stochastic optimization [4],
have greatly increased the need for fast but reliable ran-
dom number generation. To this end, efficient tests of
random number algorithms and generators are needed.
This calls for new empirical and theoretical tests. Al-
though theoretical tests based on studying some proper-
ties of algorithms give us basic knowledge of the proper-
ties of PRNG’s, random number testing remains mainly
an empirical science. Though no empirical test can ever
prove the “goodness” of any random number sequence,
such tests give us a valuable insight into their properties.
However, since the number of possible tests is practically
unlimited, the most important tests should be such that
they mimic the properties of the applications in which the
random number sequences will be used. This idea natu-
rally leads to the concept of application specific testing
introduced in the present work.

We have presented and analyzed four simple tests for
detecting correlations in random number sequences. The
cluster test is based on the idea of comparing the cluster
size distribution of a random lattice with the Ising model
at an infinite temperature. Our analysis shows that it
is particularly efficient in finding periodic correlations on
bit level. Another test based on the use of the Ising model
is the autocorrelation test, in which integrated autocor-
relation times of some quantities of the Ising model are
calculated. This test is very sensitive to correlations in
successive random numbers which are used in the clus-
ter formation process of the Wolff algorithm. The two
other tests which are based on ideas of random walks,
namely the random walk and n-block tests, can be used

to quantitatively find the range of correlations for many
generators.

As far as the PRNG’s are concerned, our analysis
shows that the origin of the errors observed in Refs.
[12-16] for GFSR generators must be due to the triple
correlations. We have also tested a set of generators
which should be able to avoid this problem by using four
lags instead of two. Such generators can be formed by
using tables of primitive pentanomials [29] or by decimat-
ing GFSR sequences [22,37]; i.e., taking every third num-
ber of their sequence, for example. Our results show that
such approaches do not completely eliminate correlations
but do make them much weaker and therefore greatly
improve the quality of generated random numbers. Such
generators indeed passed all our tests, when the longest
lag parameter p was chosen large enough (p > 1279).

Finally, we would like to point out that our results are
not only restricted to those particular models which have
been studied in this work but have relevance in other ap-
plications as well. For example, in connection with stud-
ies of other models using random walks such as percola-
tion phenomena and diffusion limited aggregation, those
generators which failed our tests should be avoided.

In conclusion, our aim has been to introduce a set of
tests which are application specific from the point of view
of Monte Carlo computer simulations in particular. Prac-
tical details of the algorithmic implementation of an ac-
tual test bench based on these tests will be published
separately [19]. We hope that the present tests can be
used to design better generators for demanding applica-
tions in physical sciences, and that further work will be
done on developing suitable tests for other applications
also.
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